Speeding up elliptic curve discrete logarithm computations with point halving

نویسندگان

  • Fangguo Zhang
  • Ping Wang
چکیده

Pollard rho method and its parallelized variants are at present known as the best generic algorithms for computing elliptic curve discrete logarithms. We propose new iteration function for the rho method by exploiting the fact that point halving is more efficient than point addition for elliptic curves over binary fields. We present a careful analysis of the alternative rho method with new iteration function. Compared to the previous r-adding walk, generally the new method can achieve a significant speedup for computing elliptic curve discrete logarithms over binary fields. For instance, for certain NIST-recommended curves over binary fields, the new method is about 27% faster than the previous best methods in single-instance Pollard rho method. When running several instances of Pollard rho method concurrently, and computing the inversions using the simultaneous inversion algorithm by Peter Montgomery, the new method is about 12-17% faster than the previous best methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The new protocol blind digital signature based on the discrete logarithm problem on elliptic curve

In recent years it has been trying that with regard to the question of computational complexity of discrete logarithm more strength and less in the elliptic curve than other hard issues, applications such as elliptic curve cryptography, a blind  digital signature method, other methods such as encryption replacement DLP. In this paper, a new blind digital signature scheme based on elliptic curve...

متن کامل

Generalized Jacobian and Discrete Logarithm Problem on Elliptic Curves

Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q...

متن کامل

An efficient blind signature scheme based on the elliptic curve discrete logarithm problem

Elliptic Curve Cryptosystems (ECC) have recently received significant attention by researchers due to their high performance such as low computational cost and small key size. In this paper a novel untraceable blind signature scheme is presented. Since the security of proposed method is based on difficulty of solving discrete logarithm over an elliptic curve, performance of the proposed scheme ...

متن کامل

Solving a Discrete Logarithm Problem with Auxiliary Input on a 160-Bit Elliptic Curve

A discrete logarithm problem with auxiliary input (DLPwAI) is a problem to find α from G, αG, αG in an additive cyclic group generated by an element G of prime order r, and a positive integer d satisfying d|(r − 1). The infeasibility of this problem assures the security of some cryptographic schemes. In 2006, Cheon proposed a novel algorithm for solving DLPwAI (Cheon’s algorithm). This paper re...

متن کامل

Twisting an elliptic curve to speed up cryptographic algorithms

An elliptic curve y = x +ax+ b over the prime field Fp may be twisted by a change of variables into the curve y = x + a′x + b′, where a′ differs from a by a quartic residue. We show that most curves over Fp may be twisted to have a′ quite small, allowing one of the multiplications in the point doubling formula to be replaced by additions. This speeds up algorithms to solve the elliptic curve di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011